Phase Differences
Consider two waves with equal frequency and amplitude, and
.
The difference between these two waves can be computed as follows:
Now
so we may write:
![\begin{array}{rcl}
x_1(t)-x_2(t) & = & A\left[ (1-\cos\theta)\times\cos(\omega t) + \sin\theta\times\sin(\omega t) \right] \\
& =& A\sqrt{2(1-\cos\theta)}\Bigl[ \frac{1-\cos\theta}{\sqrt{2(1-\cos\theta)}}\cos(\omega t) + \Bigr. \\
& & \Bigl. + \frac{\sin\theta}{\sqrt{2(1-\cos\theta)}}\sin(\omega t) \Bigr] \\
& =& A\sqrt{2(1-\cos\theta)}\left[ \cos\phi\cos(\omega t) + \sin\phi\sin(\omega t) \right] \\
& =& A\sqrt{2(1-\cos\theta)}\cos(\omega t-\phi)
\end{array}
\begin{array}{rcl}
x_1(t)-x_2(t) & = & A\left[ (1-\cos\theta)\times\cos(\omega t) + \sin\theta\times\sin(\omega t) \right] \\
& =& A\sqrt{2(1-\cos\theta)}\Bigl[ \frac{1-\cos\theta}{\sqrt{2(1-\cos\theta)}}\cos(\omega t) + \Bigr. \\
& & \Bigl. + \frac{\sin\theta}{\sqrt{2(1-\cos\theta)}}\sin(\omega t) \Bigr] \\
& =& A\sqrt{2(1-\cos\theta)}\left[ \cos\phi\cos(\omega t) + \sin\phi\sin(\omega t) \right] \\
& =& A\sqrt{2(1-\cos\theta)}\cos(\omega t-\phi)
\end{array}](/_static/latex/586c9dfde3a94e97426ffaa80a1462aa.gif)
where we have calculated a new angle using

These equations are consistent as a consequence of the division by .
Hence the maximum value of the difference is , which is achieved at
![\begin{array}{rcl}
\cos(\omega t-\phi) &=& \pm 1 \\
\omega t-\phi &=& 0, \pi, 2\pi, \dots \\
t &=& \frac{1}{\omega} \sin^{-1}\left[ \frac{\sin\theta}{\sqrt{2(1-\cos\theta)}} \right] \dots
\end{array}
\begin{array}{rcl}
\cos(\omega t-\phi) &=& \pm 1 \\
\omega t-\phi &=& 0, \pi, 2\pi, \dots \\
t &=& \frac{1}{\omega} \sin^{-1}\left[ \frac{\sin\theta}{\sqrt{2(1-\cos\theta)}} \right] \dots
\end{array}](/_static/latex/5ce246ee5eaa4c982f70fef3781f23e4.gif)
Thus given the maximum distance apart of two out-of-phase but otherwise identical oscillators, we simply say:
![\begin{array}{rcl}
M &=& A\sqrt{2(1-\cos\theta)} \\
M^2 &=& 2A^2(1-\cos\theta) \\
1-\cos\theta &=& \frac{M^2}{2A^2} \\
\cos\theta &=& 1-\frac{M^2}{2A^2} \\
\theta &=& \cos^{-1}\left[ 1-\frac{M^2}{2A^2} \right]
\end{array}
\begin{array}{rcl}
M &=& A\sqrt{2(1-\cos\theta)} \\
M^2 &=& 2A^2(1-\cos\theta) \\
1-\cos\theta &=& \frac{M^2}{2A^2} \\
\cos\theta &=& 1-\frac{M^2}{2A^2} \\
\theta &=& \cos^{-1}\left[ 1-\frac{M^2}{2A^2} \right]
\end{array}](/_static/latex/e91e74e5245bb464758d960099edb93d.gif)
Finally, in the case of the maximum being half the amplitude,
![\begin{array}{rcl}
\theta &=& \cos^{-1}\left[ 1-\frac{(1/2)^2}{2} \right] \\
&=& \cos^{-1}\left[ 1-\frac{1}{8} \right] \\
&=& \cos^{-1}\left[ \frac{7}{8} \right] \\
&=& 28.96^\circ, 331.04^\circ
\end{array}
\begin{array}{rcl}
\theta &=& \cos^{-1}\left[ 1-\frac{(1/2)^2}{2} \right] \\
&=& \cos^{-1}\left[ 1-\frac{1}{8} \right] \\
&=& \cos^{-1}\left[ \frac{7}{8} \right] \\
&=& 28.96^\circ, 331.04^\circ
\end{array}](/_static/latex/8695fc955e864ad06a01660f10d0c62b.gif)