Consider two waves with equal frequency and amplitude, x_1(t)=A\cos(\omega t) and x_2(t)=A\cos(\omega t+\theta).

The difference between these two waves can be computed as follows:


\begin{array}{rcl}
x_1(t)-x_2(t) & = & A\left[ \cos(\omega t) - \cos(\omega t + \theta) \right] \\
& =& A\left[ \cos(\omega t) - \cos(\omega t)\cos\theta + \sin(\omega t)\sin\theta \right] \\
& =& A\left[ (1-\cos\theta)\times\cos(\omega t) + \sin\theta\times\sin(\omega t) \right]
\end{array}

Now


\begin{array}{rcl}
(1-\cos\theta)^2+\sin^2\theta &= &1+\sin^2\theta+\cos^2\theta-2\cos\theta \\
& =& 2(1-\cos\theta)
\end{array}

so we may write:


\begin{array}{rcl}
x_1(t)-x_2(t) & = & A\left[ (1-\cos\theta)\times\cos(\omega t) + \sin\theta\times\sin(\omega t) \right]  \\
& =& A\sqrt{2(1-\cos\theta)}\Bigl[ \frac{1-\cos\theta}{\sqrt{2(1-\cos\theta)}}\cos(\omega t) + \Bigr. \\
& & \Bigl. + \frac{\sin\theta}{\sqrt{2(1-\cos\theta)}}\sin(\omega t) \Bigr] \\
& =& A\sqrt{2(1-\cos\theta)}\left[ \cos\phi\cos(\omega t) + \sin\phi\sin(\omega t) \right] \\
& =& A\sqrt{2(1-\cos\theta)}\cos(\omega t-\phi)
\end{array}

where we have calculated a new angle \phi using


\begin{array}{rcl}
\cos\phi & =& \frac{1-\cos\theta}{\sqrt{2(1-\cos\theta)}} \\
\sin\phi & =& \frac{\sin\theta}{\sqrt{2(1-\cos\theta)}}
\end{array}

These equations are consistent as a consequence of the division by \sqrt{2(1-\cos\theta)}.

Hence the maximum value of the difference is A\sqrt{2(1-\cos\theta)}, which is achieved at


\begin{array}{rcl}
\cos(\omega t-\phi) &=& \pm 1 \\
\omega t-\phi &=& 0, \pi, 2\pi, \dots \\
t &=& \frac{1}{\omega} \sin^{-1}\left[ \frac{\sin\theta}{\sqrt{2(1-\cos\theta)}} \right] \dots
\end{array}

Thus given the maximum distance apart of two out-of-phase but otherwise identical oscillators, we simply say:


\begin{array}{rcl}
M &=& A\sqrt{2(1-\cos\theta)} \\
M^2 &=& 2A^2(1-\cos\theta) \\
1-\cos\theta &=& \frac{M^2}{2A^2} \\
\cos\theta &=& 1-\frac{M^2}{2A^2} \\
\theta &=& \cos^{-1}\left[ 1-\frac{M^2}{2A^2} \right]
\end{array}

Finally, in the case of the maximum being half the amplitude,


\begin{array}{rcl}
\theta &=& \cos^{-1}\left[ 1-\frac{(1/2)^2}{2} \right] \\
&=& \cos^{-1}\left[ 1-\frac{1}{8} \right] \\ 
&=& \cos^{-1}\left[ \frac{7}{8} \right] \\
&=& 28.96^\circ, 331.04^\circ
\end{array}

Phase Differences

Discrepancies in sinusoidal waves

top / xhtml / css
© Carl Turner 2008-2017
design & engine by suchideas / hosted by xenSmart